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We investigate the occurrence of exponential relaxation in a certain class of closed, finite systems on the
basis of a time-convolutionless projection operator expansion for a specific class of initial states with vanishing
inhomogeneity. It turns out that exponential behavior is to be expected only if the leading order predicts the
standard separation of time scales and if, furthermore, all higher orders remain negligible for the full relaxation
time. The latter, however, is shown to depend not only on the perturbation �interaction� strength, but also
crucially on the structure of the perturbation matrix. It is shown that perturbations yielding exponential relax-
ation have to fulfill certain criteria, one of which relates to the so-called “Van Hove structure.” All our results
are verified by the numerical integration of the full time-dependent Schrödinger equation.
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I. INTRODUCTION

A substantial part of linear nonequilibrium thermodynam-
ics essentially relies on a description by means of rate equa-
tions, often in the form of master equations �1�. The crucial
quantities, such as the probability to find the system in some
state i , j or the amount of particles, energy, etc., at points i , j
in some space, are routinely believed to follow equations
such as

�

�t
Pi = �

j

R�j → i�Pj − �
j

R�i → j�Pi �1�

with time-independent transition rates from i to j, R�i→ j�.
Pertinent examples are the decay of excitations in atoms,
nuclear decay, etc. However, diffusive transport phenomena
also belong to that class, since the diffusion equation can
also be formulated to take the above form �random walk
dynamics�. Another implementation of that scheme is the
�linear� Boltzmann equation �1,2�, where particle scattering
is taken into account by means of transition rates, and many
more could be named.

However, regardless of the incontestable success of such
descriptions, the strict derivation of rate equations from un-
derlying principles often remains a problem. Typically, the
descriptiveness by means of rate equations is taken for
granted. Since those rate equations yield an exponential de-
cay toward equilibrium, the basic question may be formu-
lated as: How can an exponential decay of some observable
be derived from the Schrödinger equation?

On the basis of quantum mechanics the most popular ap-
proach to this question is probably Fermi’s Golden Rule �3�.
Despite the undisputed descriptive success of this scheme, it
is simply derived from first order perturbation theory, e.g., its
validity generally breaks down on a time scale much shorter
than the resulting relaxation time. Therefore it can hardly
describe a complete decay into equilibrium. One of the few

concrete, concise derivations of exponential decay is the
Weisskopf-Wigner theory for the relaxation of excitations in
an atom due to the coupling of the atom to a zero-
temperature, broad-band electromagnetic field �4�. However,
this theory is hardly generalizable, since it only applies if just
one state is coupled to a multitude of others, rather than
many states coupled to many others, as is typically the case.

A more abstract, rather fundamental approach has been
suggested by Van Hove �5,6�. It is based on �infinite� quan-
tum systems having continuous state densities and interac-
tions which are described by smooth functions rather than
discrete matrices. However, a lot of the findings for discrete
systems in the paper at hand are quite parallel to Van Hove’s,
as will be pointed out below.

Other approaches are based on projection operator tech-
niques, in particular the well-known Nakajima-Zwanzig
�NZ� method. This method is commonly used in the context
of open quantum systems, i.e., systems that allow for a par-
tition according to a considered system �or simply “system”�
and an environment �1,7�. For a specific choice of the initial
condition, as pointed out below, the projection onto the sys-
tem’s degrees of freedom eventually leads to an autonomous
master equation describing the dynamics of the system,
based on a systematic perturbation expansion. However, in
general, due to the complexity of higher orders, only the
leading order is taken into account. In the paper at hand we
will demonstrate that this truncation may produce wrong re-
sults even and especially for the case of fast decaying corre-
lation functions and arbitrarily weak interactions.

A further approach to this topic is based on the description
of quasiparticle dynamics in many-particle systems by the
use of Green’s functions �8�. These considerations indicate
the validity of a Boltzmann equation.

In the present paper we will employ another projection
operator technique, the so-called time-convolutionless �TCL�
method �9–14�. In the following we will follow the TCL
method as detailed in Ref. �14�. In Sec. II we introduce our
rather abstract Hamiltonian for a “closed quantum” system
�consisting of an unperturbed part and a perturbation� and
define an also rather abstract observable, the dynamics of
which we are going to investigate. In Sec. IV we demonstrate
how the TCL technique can be used to compute the above
dynamics of the variable. �This is somewhat reminiscent of
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projection techniques using “correlated projectors” �15,16�.�
We tune our models such that a leading order truncation
predicts exponential decay. For a “random interaction” this
prediction turns out to be correct, as is verified by the
numerically exact solution of the full time-dependent
Schrödinger equation. In the following Sec. V nonrandom
�“structured”� perturbation matrices are discussed in more
detail. While a leading order truncation still predicts expo-
nential relaxation, it is demonstrated that this prediction may
fail even for arbitrarily large models and arbitrarily small
interactions. This breakdown stems from the fact that higher
order contributions are not negligible if the interaction ma-
trix violates certain criteria. Before we will close with a sum-
mary and conclusion in Sec. VI, these criteria will be also
related to those conditions which Van Hove postulated in
order to explain the occurrence of exponential relaxation.

II. MODELS, OBSERVABLES, AND INTERPRETATION
OF DYNAMICS

In the present paper we will analyze quantum models
which are much simpler than most of the examples men-
tioned in the Introduction. They are defined on a very gen-
eral, rather formal level and are not meant to describe any
specific, realistic quantum system in great detail. The Hamil-
tonian is taken to consist of a local part H0 and an interaction
part V such that H=H0+V. In particular, V is assumed to take
the special form of an “off-diagonal block structure” in the
eigenbasis of H0, that is, the matrix representation of H may
be written as

H =�
� 0

i

n − 1
�� v

0 �

� 0

v† j

n − 1
��

0 �

� �2�

or, equivalent to the above notation, H=H0+V may also be
written as

H0 = �
i=0

n−1
i

n − 1
���i	
i� + �

j=0

n−1
j

n − 1
���j	
j� ,

V = ��
i,j=0

n−1

vij�i	
j� + H.c.� , �3�

where �i	 , �j	 form the basis in which Eq. �2� is represented.
Obviously, the complete Hilbert space is divided into two
subspaces, where i runs through the states of the first and j
through the states of the second subspace, respectively. Ob-
viously, H0 may correspondingly be separated into two parts
which we only specify very roughly at this point by two
parameters: There are two identical “bands” with width ��
and n equidistant energy levels each.

The average strength of the interaction V is measured by

�2 =
1

n2 �
i,j=0

n−1

�vij�2. �4�

In our first example in Sec. IV we take the matrix elements
vij in the off-diagonal blocks to be Gaussian, complex, ran-
dom numbers. For the other examples V will be specified
below. In all cases the matrix elements of V in the diagonal
blocks are all zero, just to keep the picture as simple as
possible.

We will investigate the �relaxation� dynamics of an ab-
stract observable a, represented by an operator A, which is
chosen in such a way that

�A,H0� = 0,TrA� = 0,TrA2� = 1. �5�

The first of these properties states that A is diagonal in the
eigenbasis of H0, while the remaining two properties do not
mean crucial restrictions on A. While all of the following
will be correct for any A featuring the above properties, we
mainly concentrate in our examples on “binary” operators,
i.e., operators featuring only two different eigenvalues,
namely, +1 /�2n in one subspace and −1 /�2n in the other.
This means that a�TrA��= +1 /�2n indicates that the sys-
tem entirely occupies one subspace and a=−1 /�2n indicates
that it entirely occupies the other subspace. �Here, � is the
density matrix for the state of the system.� If and only if a�t�
is found to relax exponentially to zero, the system allows for
a merely statistical interpretation entirely beyond quantum
physics: It is then in accord with a system featuring two
distinguishable states in between it can “hop” with a given
transition rate, the latter being equal for both directions. a
then represents the difference between the probabilities of
finding it in one or the other state, respectively.

In an abstract way the above model may represent many
physical situations. It may be viewed as a simplified model
for the exchange of an excitation between, e.g., two weakly
coupled atoms, molecules, quantum dots, etc. A then repre-
sents the probability to find atom 1 excited, subtracted by the
probability to find atom 2 excited, V represents the coupling
in this scenario. Or it may model the momentum dynamics of
a particle bound to one dimension which possibly changes its
direction �forward-backward� due to some scattering. In a
many-particle system the current operator could be identified
with A and V may stand for a particle-particle interaction.
This way the dynamics of the current autocorrelation func-
tion could be investigated based on the framework below.
More detailed information about such models can be found
in Refs. �17–22�.

III. TCL SCHEME AND CHOICE OF THE
PROJECTION OPERATOR

In this section we give a short overview of the time-
convolutionless �TCL� projection operator technique �13,14�.
Furthermore, we introduce the pertinent equations which are
applied to models with various interactions in Secs. IV and
V. A detailed derivation of these equations is beyond the
scope of this paper and can be found in Refs. �14,20�.
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The TCL method is a projection operator technique such
as the well-known NZ technique �23,24�. Both are applied in
order to describe the reduced dynamics of a quantum system
with a Hamiltonian of the type H=H0+V. Generally, the full
dynamics of the system are given by the Liouville–von Neu-
mann equation

�

�t
��t� = − ı�V�t�,��t�� = L�t���t� . �6�

�Now and in the following all equations are denoted in the
interaction picture.� In order to describe the reduced dynam-
ics of the system, one has to construct a suitable projection
operator P which projects onto the relevant part of the den-
sity matrix ��t�. P has to satisfy the property P2��t�=P��t�.
Recall that in our case the relevant variable is chosen as the
expectation value a�t� of the binary operator A. For initial
states ��0� with

P��0� = ��0� �7�

the TCL method yields a closed time-local equation for the
dynamics of P��t�,

�

�t
P��t� = K�t�P��t� �8�

with
K�t� = �

i=1

�

Ki�t� . �9�

The TCL technique avoids the usually troublesome time con-
volution which appears, e.g., in the context of the NZ tech-
nique. Equations �8� and �9� represent a formally exact per-
turbative expansion.

A brief comment on initial conditions should be made
here. If Eq. �7� is not fulfilled, of course an additional inho-
mogeneity appears on the right-hand side of Eq. �8�. This
may change the solutions of Eq. �8� drastically, cf. Ref. �25�,
and references therein. However, for the model to be ad-
dressed below, there is substantial numerical evidence that,
for a large set of initial states that do not fulfill Eq. �7�, the
dynamics are nevertheless reasonably well described by Eq.
�8� �without inhomogeneity� �17,20,26–29�. Having men-
tioned this issue we consider in the following exclusively
initial states in accord with Eq. �7�.

For many models the odd cumulants of the expansion �9�
vanish: K2i+1�t�=0. This will turn out to apply to our model
as well. The lowest nonvanishing order scales quadratically
with � and reads

K2�t� = �
0

t

dt1PL�t�L�t1�P . �10�

For the fourth order term one finds

K4�t� = �
0

t

dt1�
0

t1

dt2�
0

t2

dt3PL�t�L�t1�L�t2�L�t3�P

− PL�t�L�t1�PL�t2�L�t3�P

− PL�t�L�t2�PL�t1�L�t3�P

− PL�t�L�t3�PL�t1�L�t2�P . �11�

Note that the TCL approach is commonly used in the context
of open quantum systems �1,14,23,24�. The TCL method is,
however, also applicable to our closed quantum system.

To those ends, we define the projection operator P by

P��t� �
1

2n
1̂ + ATrA��t�� =

1

2n
1̂ + Aa�t� . �12�

As already mentioned above, P is constructed to project onto
the time-dependent expectation value a�t� of the binary op-
erator A, in the Schrödinger picture. However, since A com-
mutes with H0, this expectation value is identical in the in-
teraction and the Schrödinger picture. The full dynamics
�Hilbert space: dimension 2n, Liouville space of density ma-
trices: dimension �2n�2� is broken down to the time evolution
of the single variable a�t�, all other information is neglected.
As a suitable initial condition we can then choose ��0�
= �1 /2n�1̂+ �1 /�2n�A which implies a�0�=1 /�2n. Inserting
Eq. �12� into Eq. �8� yields the closed equation

ȧ�t� = �
i=1

�

Ki�t�a�t� �13�

with Ki�t�=TrAKi�t�A�. Due to Eq. �12�, the second order
term reads

K2�t� = − �
0

t

dt�C�t�� , �14�

where the two-point correlation function C�t�� is given by

C�t�� = Trı�V�t�,A�ı�V�t1�,A��, t� � t − t1. �15�

A rather lengthy but straightforward calculation yields for
the fourth order

K4�t� = �
0

t

dt1�
0

t1

dt2�
0

t2

dt3 I1 + I2 + I3 + I4,

I1 = Tr†V�t1�,�V�t�,A�‡†V�t2�,�V�t3�,A�‡� ,

I2 = − C�t − t1�C�t2 − t3� ,

I3 = − C�t − t2�C�t1 − t3� ,

I4 = − C�t − t3�C�t1 − t2� . �16�

IV. SECOND ORDER TCL AND COMPLETELY
RANDOM INTERACTION

In this section we apply the equations in second order
TCL to a model with the completely random interaction in-
troduced in Sec. II. The function C�t�� in Eq. �15� is identical
to the autocorrelation function of the interaction, since it can
also be written as

C�t�� =
4

n
�
i,j=0

n−1

�vij�2cos��ij�t − t1�� �17�

with frequencies �ij = �i− j� / �n−1��� corresponding to H0.
Here, just as in many other examples, C�t�� decays within
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the correlation time �C which is of the order of �C�4	 /��
for our model. Afterwards the integral K2�t� becomes ap-
proximately time independent and assumes a constant value
R until the “Heisenberg time” T=2	n /�� is reached. This
behavior can be inferred from integrating Eq. �17� and ex-
ploiting the properties of the sinc function. From this analy-
sis also R may be found with an accuracy determined by the
law of large numbers. Thus the second order approximation
of Eq. �13� eventually results in

ȧ�t� = − Ra�t�, R �
4	n�2

��
. �18�

We hence obtain a rate equation featuring the form of Eq. �1�
and thus exponential dynamics for a�t�. The solutions for
a�t� decay exponentially with a relaxation time �R=1 /R.
However, this result is only valid within the boundaries �C

�R�T, because K2�t� can only be considered as time inde-
pendent up to the Heisenberg time. Recall to this end that our
model features equidistant energies such that C�t�� is strictly
periodic with T. These two boundaries also result in two
necessary criteria for the system parameters which have to be
fulfilled in order to produce the occurrence of exponential
dynamics

16	2n�2

��2 
 1,
8	2n2�2

��2 � 1. �19�

Remarkably, the whole derivation of the rate equation using
second order TCL does not depend on the details of the
interaction, i.e., the individual absolute values of the single
matrix elements as well as their relative phases are not rel-
evant. We should already mention here that the “structure,”
which we are going to introduce into the interaction in the
following section, only concerns those details, hence the sec-
ond order contribution K2 will be the same in all our follow-
ing examples.

In Fig. 1 the numerical solution of the Schrödinger equa-
tion is shown for the above repeatedly mentioned random
interaction and compared with the TCL prediction. All pa-
rameters �the width of the Gaussian distribution according to
which the matrix elements of V are generated, the bandwidth,

etc.� are adjusted such that the criteria �19� are well satisfied.
This solution is obtained by exact diagonalization. In fact,
we find a very good agreement with the theoretical predic-
tion of second order TCL.

V. FOURTH ORDER TCL AND NONRANDOM
INTERACTIONS

In this section we will be concerned with the structure of
the interaction matrix and, especially, its influence on the
time evolution of the expectation value a�t�. It will be dem-
onstrated that the theoretical prediction �18� of second order
TCL fails to describe the numerically exact solution of the
Schrödinger equation correctly for certain “interaction
types,” even and especially if the conditions �19� are ful-
filled, i.e., the “strength” is “adequate.” We will outline that
this failure stems from the fact that the fourth order contri-
bution of the TCL expansion is not negligible on the relax-
ation time scale which is obtained from second order TCL.
However, the exact evaluation of K4�t� turns out to be almost
impossible, analytically and numerically. Instead we will
present feasible estimations of K4�t� /K2�t� based on suitable
approximations of K4�t� called S�t� �see Eqs. �23� and �38��.
Whenever

q�t� �
S�t�

K2�t�
� 1 �20�

is violated the influence of higher order terms is not negli-
gible. If this is the case for times t of the order of or shorter
than �R, no exponential relaxation will result.

A. Uniform interactions and Van Hove structure

Let us start with an example. Figure 2 shows the time
evolution of the expectation value a�t� for an interaction with
vij =�. This type of interaction is, of course, highly nonran-
dom, since all matrix elements have the same absolute value
and phase. The second order approximation obviously yields
a wrong description for this interaction structure, that is, the
dynamics are not exponential, although both of the condi-
tions �19� are well fulfilled. It should be remarked again that

time t

a
(t

)/
a
(0

)

0

0

1

4000

FIG. 1. Time evolution of the expectation value a�t� for an
interaction with completely random vij. The numerical result
�crosses� indicates exponential behavior and is in very good agree-
ment with the theoretical prediction �18� of second order TCL �con-
tinuous curve�. The system parameters n=1000, ��=0.5, �=2.5
10−4 fulfill the conditions �19�.

0

time t

a
(t

)/
a
(0

)

−0.5

1

25000

FIG. 2. Time evolution of the expectation value a�t� for an
interaction with vij =�. The theoretical prediction �18� of second
order TCL �continuous curve� fails to describe the numerical solu-
tion �crosses� correctly, although the system parameters n=1000,
��=0.5, �=2.510−4 still fulfill the conditions �19�. V violates the
Van Hove structure.
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the observed nonexponential behavior definitely is a struc-
tural issue. For instance, it cannot be “repaired” by simply
decreasing the overall interaction strength, because this de-
crease would eventually lead to the violation of the criteria
�19�.

To analyze this model we now develop our first estimate
S�t� for K4�t� which concerns the time scale t� ��C. We
start from Eq. �16�, where we abbreviate the triple time in-
tegration by a single “�.” One may hence write K4�t�=�I1

+ I2+ I3+ I4. Figure 3 shows a sketch for the integration vol-
ume of K4�t� in the three-dimensional space which is
spanned by t1, t2, t3. The integration does not run over the
whole cube with the edge length t, but only over the region
where t3� t2� t1 holds.

C�t− t1� is the autocorrelation function of the interaction
which has already been mentioned in Eq. �15�. Recall that
C�t�� is only different from zero around t�=0 in a small
interval of the width �C. Thus, the integrands I2, I3, I4 are
only different from zero in a small volume around the region
where both of the arguments are equal for each of the two
multiplied correlation functions.

First of all let us focus on I3 as well as I4. The integrand
I3 contributes to K4�t� for t= t2 and t1= t3, while the integrand
I4 contributes to K4�t� for t= t3 and t1= t2, respectively. The
sketch in Fig. 3 displays that both of these regions overlap
only in the vicinity of one single point with the integration
volume of K4�t�, namely, at the point where all arguments are
equal to t. Especially, this overlap does not increase with t.
Therefore the triple time integration is estimated by �I3
��I4�C�0�2�C

3 . Using the estimate R�C�0��C, we eventu-
ally obtain for the ratio between the contributions from I3 , I4
to the fourth order and the second order K2�t��C� for times
t��C

�I3

R
�

�I4

R
� C�0��C

2 �
�C

�R
� � . �21�

Recall that the derivation of exponential behavior within sec-
ond order TCL has required �C
�R or, equivalently, �
1
such that the contributions to K4�t� which arise from I3 and I4

are negligible, at least in comparison with R.
Analogous conclusions cannot be made for the term I2,

because its overlap with the integration volume is larger and
grows with t. We have to find another estimation for the
contributions of I2 as well as I1, of course. Our estimation is
based on the fact that neither I2 nor I1 can decay on a shorter
time scale than �C in any possible direction of the �t1 , t2 , t3�
space. This fact is obviously correct for I2. But what about
I1? Since the term I1 consists of summands which have the
typical form

vabvbcvcdvdae−ı�abte−ı�bct1e−ı�cdt2e−ı�dat3, �22�

only those frequencies and, especially, those largest frequen-
cies in I1 which have already appeared in C�t�� contribute
significantly to I1. Consequently, I1 can never decay faster
than C�t�� in any possible direction of the �t1 , t2 , t3� space. In
the �possibly unrealistic� “best case” I1+ I2 decays within �C
around the point I1/2�t , t , t , t�= I1/2�0,0 ,0 ,0�� I1/2�0�. We can
therefore estimate the value of q��C� by

�I1 + I2

R
�

�I1�0� − C�0�2��C
3

C�0��C
= � I1�0�

C�0�2 − 1�� � � .

�23�

� is a lower bound for the ratio between the fourth and the
second order of TCL for times t��C. If ��1 or even larger,
then K4�t��C� dominates K2�t��C�, that is, exponential be-
havior in terms of the second order prediction cannot occur.
�
1, however, does not allow for a strict conclusion, since
a slower decay of I1 or I2, as the case may be, raises their
contribution to K4�t�. Nevertheless, the condition �
1 is an
additional criterion for the occurrence of exponential decay
which involves the structure of V.

In the following we will discuss why and to what extend
� and, especially, the ratio I1�0� /C�0�2 is related to the con-
ditions which have been postulated by Van Hove for the
interaction V in order to explain the onset of exponential
relaxation, see Refs. �5,6�. To this end, let us define a Her-
mitian operator G by

G � †V,�V,A�‡ . �24�

A straightforward calculation yields

I1�0� = TrG2� = �
i,j

�Gij�2, C�0� = TrAG� , �25�

where Gij represents the matrix elements of G in the eigen-
basis of H0. Furthermore, let us also introduce the superop-
erator D which is given by

DM � �
i

�i	Mii
i� �26�

and projects any operator M onto its diagonal elements in the
eigenbasis of H0. Then the expression

FIG. 3. Sketch for the integration volume of K4�t� for fixed t.
The cube with the edge length t is drawn with thin lines, the actual
integration volume is marked with thick lines. The dashed lines
represent the changed integration volume which is used in the
approximations.
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�A,G� � TrADG� �27�

defines an inner product between the operators A and G,
because �A ,G�= �G ,A���=�G ,A�� holds and �A ,A�=1, as
well as �G ,G�=�iGii

2, are both positive, real numbers. The
Schwartz inequality �A ,G�2� �A ,A�2�G ,G�2 can conse-
quently be formulated. By the use of �A ,G�=C�0� we even-
tually obtain

C�0�2 � �
i

Gii
2 � �

i,j
�Gij�2 = I1�0� , �28�

i.e., I1�0� /C�0�2�1. C�0�2 is at most as large as the sum of
the squared diagonal elements of G, according to the above
equation. Therefore I1�0� /C�0�2�1 and hence sufficiently
small � can only be realized if the diagonal elements of G
and thus the diagonal elements of V2 are as large as possible
in comparison with the remaining nondiagonal elements of
V2 �G�. In principle, this is essentially what Van Hove pro-
claimed �5,6�.

In this sense, we define the “Van Hove structure” in the
context of finite quantum systems: The interaction V is said
to feature Van Hove structure if

�� �
I1�0�
C�0�2� 
 1, �29�

while all conditions of second order TCL are simultaneously
kept, of course. The latter refers to the validity of Eq. �19�.
The comparison with Eq. �23� shows that the Van Hove
structure implies �
1 and hence the relaxation may possi-
bly be exponential, as described by the second order. Since
the evaluation of �� is much more efficient than the complete
computation of fourth order TCL �there is no time depen-
dence left, e.g., I1�0� only depends on t= t1= t2= t3=0�, the
Van Hove structure eventually is an assessable criterion for
the possible occurrence of exponential decay. It is a criterion
in the sense that only if Eq. �29� is satisfied, a use of the
second order approximation is justified for any time longer
than the correlation time, i.e., t��C.

Let us now apply these results to the already introduced
models with random and nonrandom �vij =�� interactions,
respectively. The only term which varies for the different
models is I1�0�, since the terms C�0�2�n2�4 and �
�16	2n�2 /��2 �again with an accuracy set by the law of
large numbers for the random interaction� are the same for
random and nonrandom interactions. For the random interac-
tion a straightforward calculation leads to

I1�0� = 32n2�4, �� = 2� 
 1 �30�

such that the random interaction indeed features Van Hove
structure. This agrees with the numerical results in Fig. 1
which yielded exponential relaxation. In the case vij =�,
however, we finally obtain

I1�0� = 16n3�4, �� =
16	2n2�2

��2 , �31�

where ���1, according to Eq. �19�. The absence of the Van
Hove structure already suffices to explain the breakdown of
exponential behavior in Fig. 2.

One may nevertheless be inclined to argue that the Van
Hove structure is not the crucial difference between those
two cases but simply the randomness of the matrix elements
�which possibly induces quantum chaos�. We therefore
present a counterexample which immediately disproves such
an argument. The example is slightly different from the oth-
ers, since the complete system is not partitioned into equally
large subspaces. n1 and n2 define the number of levels of the
respective subspaces. One subspace consists of only one
state �n1=1�. Thus, in the matrix V there is only a single
column with nonzero elements and a single row, respectively.
Although these nonzero elements are chosen to be all equal
�nonrandom�, it can be shown that this V features Van Hove
structure. Note that such a Hamiltonian occurs, e.g., in the
context of spin-boson models at zero temperature or the sce-
nario addressed by the Weisskopf-Wigner theory, see Ref.
�14�.

Figure 4 shows an almost perfect correspondence between
the numerical solution of the Schrödinger equation and the
theoretical prediction �18� which is obtained by the use of
second order TCL. Here, exponential relaxation is found,
although V is not randomly chosen.

B. Sparse interaction and localization

So far, we numerically found exponential decay in accord
with the second order for all considered models that showed
the Van Hove structure. There is, however, nonexponential
behavior for some types of interactions which feature the
Van Hove property in the sense of Eq. �29� and are in accord
with Eq. �19�. Recall that those are only necessary but not
sufficient conditions for the occurrence of exponential decay.

An example for such a situation is a model with a random
but, say, “sparsely populated” interaction. This model is al-
most identical to the model with the completely random in-
teraction. The only difference is that only 1/10 of the matrix
elements are Gaussian distributed numbers, all others are
zero. The nonzero numbers are randomly placed. Apparently,
this type of interaction fulfills the Van Hove structure, since
the completely random interaction already does.

Figure 5 displays the numerical solution of the
Schrödinger equation and the theoretical prediction �18� of

time t

a
(t

)/
a
(0

)

0

0

1

4000

FIG. 4. Time evolution of the expectation value a�t� for the
interaction of spin-boson type. The numerical result �crosses� indi-
cates exponential behavior and perfectly agrees with the theoretical
prediction �18� of second order TCL �continuous curve�. System
parameters: n1=1 �single level�, n2=2000 �many levels�, ��=0.5,
�=2.510−4.
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second order TCL. At the beginning there is a good agree-
ment but then the numerical solution starts to deviate from a
purely exponential decay and finally sticks at a clearly posi-
tive value. The latter nonzero value may be a hint toward
localization effects which also appear, e.g., in the context of
the Anderson model �30–33�. And in fact, the sparsely popu-
lated interaction takes a form which is very similar to the
Hamiltonian of the, e.g., three-dimensional Anderson model
in the chaotic regime.

Apparently, we have to extend the analysis of the fourth
order: There is no exponential behavior by the means of a
complete exponential decay, although V fulfills the Van Hove
property. Recall that the Van Hove criterion has been derived
from the consideration of times t� ��C and thus t= t1= t2
= t3� ��C. Hence, we have to reconsider the full time de-
pendence of the fourth order to produce a feasible estimate
for the time scale t��R. To this end, the integrand I1 is
expressed by

I1 = TrG�t1,t�G�t2,t3�� , �32�

where the Hermitian operator G�t1 , t� is again given by

G�t,t1� � †V�t�,�V�t1�,A�‡ . �33�

If I1�0��C�0�2, the diagonal terms dominate at t= t1= t2= t3.
Based on this fact, we carefully assume that I1 is dominated
by these terms for other times as well. Of course, this as-
sumption neglects the larger part of all terms but leads, as
will be demonstrated below, to a criterion which may be
evaluated with limited computational power. �For our simple
example its validity can also be counterchecked by direct
numerics.� However, following this assumption, I1 can be
approximated by

I1 � �
i

Gii�t − t1�Gii�t2 − t3� , �34�

where Gii�t− t1� are the diagonal matrix elements of G�t , t1�
in the eigenbasis of H0, namely,

Gii�t − t1� = 2�
j

�Aii − Ajj��Vij�2cos��ij�t − t1�� . �35�

Furthermore, the correlation function C�t− t1� can, by the use
of this notation, also be written as

C�t − t1� = �
i

AiiGii�t − t1� �36�

such that I2, the remaining fourth order integrand, can be
expressed as well by

I2 = − �
i,j

AiiGii�t − t1�AjjGjj�t2 − t3� . �37�

In order to estimate with reasonable computational effort
how K4�t� compares with K2�t� another approximation is
necessary. Obviously, the expressions for I1 , I2 are invariant
along lines described by t1=const, t2= t3. Thus, as an ap-
proximation, we shift the integration volume from the origi-
nal region, indicated with solid lines in Fig. 3, to a new
region, indicated with dashed lines in Fig. 3. Obviously, this
is a rather rough estimate but it will turn out to be good
enough for our purposes. Now the coordinate transformation
x= t− t1, y= t2− t3, z= t− t2 decouples the integrations within
the new integration volume such that we eventually find for
S�t��K4�t� �if V features Van Hove structure�

S�t� = t��
i

�i�t�2 − K2�t�2� , �38�

with the time integral �i�t���0
t dt�Gii�t��. Now Eq. �20� may

eventually be checked with very low computational power,
based on S�t� from Eq. �38�. This adds to Eqs. �19� and �29�
as a further manageable criterion for exponential relaxation.
Figure 6 shows q�t� �based on Eq. �38�� for the following
interaction types: the completely random interaction, the in-
teraction of spin-boson type, and the random but sparsely
populated interaction. Figure 6 apparently demonstrates that
this approximation is able to explain the breakdown of ex-
ponential behavior in the case of a random, sparsely popu-
lated interaction: The fourth order becomes roughly as large
as the second order at a time which agrees with the deviation

time t
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(0
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0
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4000

FIG. 5. Time evolution of the expectation value a�t� for an
interaction with random but “sparsely populated” vij. The theoreti-
cal prediction �18� of second order TCL �continuous curve� deviates
from the numerical solution �crosses�, even though the Van Hove
structure as well as the conditions �19� are fulfilled. System param-
eters: n=1000, ��=0.5, �=2.510−4.

time t

q(
t)

0
0

1
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1000 2000

FIG. 6. Time evolution of the value q�t� based on Eq. �38�. q�t�
is numerically calculated for a completely random interaction
�crosses�, the interaction of spin-boson type �squares�, and the ran-
dom but sparsely populated interaction �circles�. Note that K2�t� is a
constant which is also identical for all three interactions. The sys-
tem parameters are chosen according to Figs. 1, 4, and 5,
respectively.
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between the second order theory and the numerical results in
Fig. 5. In both other cases q�t� remains sufficiently small, at
least until the relaxation time is reached.

Obviously, regardless of the interaction type K4�t� will
eventually dominate K2�t� for large enough times �cf. Ref.
�34��. This, however, does not necessarily spoil the exponen-
tial decay: If a�t� has already decayed almost completely into
equilibrium, even a significant change of the rate K�t� will
not change the overall picture of an exponential decay �as
long as K�t� remains negative�. The influence of a large K4�t�
will only be visible if it occurs, while a�t� is still far from
equilibrium, i.e., at times of the order of �R. If one now
computes the ratio q�t� for the time t=�R, one finds

q��R� �
�

i

�i��R�2

R2 − 1, �39�

where one has to take Eq. �38� and K2��R�=R=1 /�R into
account. This form has the advantage of being completely
independent of the overall interaction strength �. One can
hence compute q��R�, taking �R as a free variable. The region
in which q��R�� �1 then represents the range of different �R

for which exponential decay is possible and to be expected.
The different “possible” �R can then be implemented by tun-
ing � appropriately. Often q��R� is found to increase monoto-
nously, essentially as in Fig. 6. Thus a good number to char-
acterize a class of models with different relaxation times
�interaction strengths� would be �max as the largest time for
which q��max�� �1 holds true. This then indicates the larg-
est timescale on which exponential relaxation can still be
expected. We should note here that we intend to use this
measure �max to investigate transport behavior in models of
the Anderson-type in a forthcoming paper.

VI. SUMMARY AND OUTLOOK

We investigated the dynamics of some expectation values
for a certain class of closed, finite quantum systems by
means of the TCL projection operator method. This tech-

nique yields a perturbation expansion for those dynamics.
Taking only the second �leading� order into account, we find
that the evolution of these expectation values may be de-
scribed by a rate equation, i.e., they relax exponentially if
certain criteria are fulfilled. Those criteria, however, only
depend on “rough” parameters such as overall interaction
strength, bandwidth, and density of states but not on, e.g., the
phases of the interaction matrix elements. An adequately
computed numerical solution of the Schrödinger equation is
in accord with this leading order result for random interac-
tion matrices. However, numerics also show that this accor-
dance breaks down if one considers nonrandom interactions,
even if the above rough criteria are met. This, of course,
indicates that higher orders are not negligible, depending on
the structure, not only on the strength of the interaction. Sub-
sequently, we established a numerically simple estimate for
the absolute value of the fourth, i.e., the next higher order, in
comparison to the second, for short times. From this ap-
proach it can be inferred that the fourth order remains neg-
ligible at small times if the interaction features a certain
structure which we define as Van Hove structure according to
Ref. �5�. However, numerics indicate that for certain interac-
tion structures the fourth order may become non-negligible
at larger times, thus spoiling the exponential relaxation, even
if the interaction features Van Hove structure. Hence we sug-
gest one more criterion �based on Eqs. �20� and �38�� that
allows for the detection of such a behavior without diagonal-
izing the full system.

Diffusive transport in spatially extended quantum systems
may be viewed as a form of exponential relaxation. Thus we
intend to exploit the various criteria which are suggested in
this paper to investigate the occurrence of diffusion in the
Anderson model and/or other solid state models that do not
allow for a full numerical diagonalization.

ACKNOWLEDGMENTS

We sincerely thank H.-P. Breuer, M. Michel, and M.
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